D=Outside diameter of pipe containers or bottles in inches (millimeters).

P=Maximum allowable operating pressure, p.s.i. (kPa) gage.

F=Design factor as set forth in §192.111 of this part.

[35 FR 13257, Aug. 19, 1970, as amended by Amdt. 192–85, 63 FR 37503, July 13, 1998]

§ 192.177 Additional provisions for bottle-type holders.

(a) Each bottle-type holder must be—

(1) Located on a site entirely surrounded by fencing that prevents access by unauthorized persons and with minimum clearance from the fence as follows:

Maximum allowable operating pressure	Minimum clear- ance feet (me- ters)
Less than 1,000 p.s.i. (7 MPa) gage	25 (7.6) 100 (31)

- (2) Designed using the design factors set forth in $\S 192.111$; and
- (3) Buried with a minimum cover in accordance with § 192.327.
- (b) Each bottle-type holder manufactured from steel that is not weldable under field conditions must comply with the following:
- (1) A bottle-type holder made from alloy steel must meet the chemical and tensile requirements for the various grades of steel in ASTM A 372/A 372M.
- (2) The actual yield-tensile ratio of the steel may not exceed 0.85.
- (3) Welding may not be performed on the holder after it has been heat treated or stress relieved, except that copper wires may be attached to the small diameter portion of the bottle end closure for cathodic protection if a localized thermit welding process is used.
- (4) The holder must be given a mill hydrostatic test at a pressure that produces a hoop stress at least equal to 85 percent of the SMYS.
- (5) The holder, connection pipe, and components must be leak tested after installation as required by subpart J of this part.

[35 FR 13257, Aug. 19, 1970, as amended by Amdt. 192–58, 53 FR 1635, Jan. 21, 1988; Amdt 192–62, 54 FR 5628, Feb. 6, 1989; 58 FR 14521, Mar. 18, 1993; Amdt. 192–85, 63 FR 37503, July 13, 19981

§192.179 Transmission line valves.

- (a) Each transmission line, other than offshore segments, must have sectionalizing block valves spaced as follows, unless in a particular case the Administrator finds that alternative spacing would provide an equivalent level of safety:
- (1) Each point on the pipeline in a Class 4 location must be within $2\frac{1}{2}$ miles (4 kilometers) of a valve.
- (2) Each point on the pipeline in a Class 3 location must be within 4 miles (6.4 kilometers) of a valve.
- (3) Each point on the pipeline in a Class 2 location must be within $7\frac{1}{2}$ miles (12 kilometers) of a valve.
- (4) Each point on the pipeline in a Class 1 location must be within 10 miles (16 kilometers) of a valve.
- (b) Each sectionalizing block valve on a transmission line, other than offshore segments, must comply with the following:
- (1) The valve and the operating device to open or close the valve must be readily accessible and protected from tampering and damage.
- (2) The valve must be supported to prevent settling of the valve or movement of the pipe to which it is attached.
- (c) Each section of a transmission line, other than offshore segments, between main line valves must have a blowdown valve with enough capacity to allow the transmission line to be blown down as rapidly as practicable. Each blowdown discharge must be located so the gas can be blown to the atmosphere without hazard and, if the transmission line is adjacent to an overhead electric line, so that the gas is directed away from the electrical conductors.
- (d) Offshore segments of transmission lines must be equipped with valves or other components to shut off the flow of gas to an offshore platform in an emergency.

[35 FR 13257, Aug. 19, 1970, as amended by Amdt. 192–27, 41 FR 34606, Aug. 16, 1976; Amdt. 192–78, 61 FR 28784, June 6, 1996; Amdt. 192–85, 63 FR 37503, July 13, 1998]

§ 192.181 Distribution line valves.

(a) Each high-pressure distribution system must have valves spaced so as